Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

E. Yang, Jian Zhang, Yu-Biao Chen, Yao Kang, Ye-Yan Qin, Zhaoji Li, Jian-Kai Cheng, Rui-Feng Hu, Yi-Hang Wen and Yuan-Gen Yao*

The State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: yyg@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.047$
$w R$ factor $=0.117$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Dichlorobis(1,10-phenanthroline)manganese(II)salicylaldoxime (1/1)

The structure of the title compound, $\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]$.$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$ or $\left.\left[\mathrm{MnCl}_{2} \text { (phen) }\right)_{2}\right]$-saox (saox is salicylaldoxime and phen is 1,10 -phenanthroline), consists of a discrete saox molecule and a neutral $\left[\mathrm{MnCl}_{2}(\text { phen })_{2}\right]$ molecule. The $\mathrm{Mn}^{\mathrm{II}}$ atom is coordinated by two chloride ions and four N atoms of two phen ligands, forming a distorted octahedral coordination geometry, with four $\mathrm{Mn}-\mathrm{N}$ distances ranging from 2.275 (3) to 2.315 (2) \AA, and $\mathrm{Mn}-\mathrm{Cl}$ bond lengths of 2.4619 (9) and 2.4285 (9) A.

Comment

One of the interesting aspects of manganese complexes is that manganese plays an important role in biological systems (Lawrence \& Sawyer, 1978; Ruttingter \& Dismukes, 1997). We chose phen and saox (saox is salicylaldoxime and phen is $1,10-$ phenanthroline) as ligands to react with $\mathrm{Mn}^{\mathrm{II}}$ salts, because of the biological importance of α-diimines, which chelate with some ions of $3 d$ transition metals and 2-hydroxyoximes (Keeney et al., 1984). We report here the synthesis and crystal structure of the title compound, $\left[\mathrm{MnCl}_{2}(\text { phen })_{2}\right]$-saox, (I).

The X-ray structure analysis reveals that (I) contains a neutral $\left[\mathrm{MnCl}_{2}(\text { phen })_{2}\right]$ molecule and a discrete saox molecule, as shown in Fig. 1. In the $\left[\mathrm{MnCl}_{2}(\text { phen })_{2}\right]$ molecule, the $\mathrm{Mn}^{\mathrm{II}}$ atom is coordinated by two chloride anions and four N atoms of two phen ligands in a distorted octahedral coordination geometry; the $\mathrm{Mn}-\mathrm{N}$ bond lengths range from 2.275 (3) to 2.315 (2) \AA, and the $\mathrm{Mn}-\mathrm{Cl}$ bond lengths are 2.4619 (9) and 2.4285 (9) \AA. A packing diagram of (I) is presented in Fig. 2 and it shows the existence of an O2$\mathrm{H} 2 \cdots \mathrm{~N} 5$ hydrogen bond in the uncoordinated soax molecule, and an $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1(2-x,-y,-z)$ hydrogen bond between the uncoordinated soax molecule and the inversion-related $\left[\mathrm{MnCl}_{2}(\text { phen })_{2}\right]$ molecule.

Experimental

$\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, salicyaldoxime and 1,10-phenanthroline (molar ratio 1:1:1) were dissolved in ethanol (20 ml) and refluxed for 3 h . The resulting solution was allowed to stand at room temperature for a week and brown crystals of (I) were obtained.

Received 24 February 2004
Accepted 5 March 2004 Online 20 March 2004

Figure 1
A view of the asymmetric unit of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. H atoms have been omitted for clarity.

Crystal data

$\left[\mathrm{MnCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right] \cdot \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{2}$
$M_{r}=623.38$
Triclinic, $P \overline{1}$
$a=10.7688$ (6) \AA
$b=10.8408$ (6) \AA
$c=13.3473$ (7) \AA
$\alpha=89.032(1)^{\circ}$
$\beta=66.477(1)^{\circ}$
$\gamma=88.276(1)^{\circ}$
$V=1428.04(13) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.450 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4106 reflections
$\theta=1.7-25.1^{\circ}$
$\mu=0.69 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, brown
$0.56 \times 0.50 \times 0.40 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.807, T_{\text {max }}=1.000$
7520 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.117$
$S=1.08$
4964 reflections
370 parameters
H -atom parameters constrained

4964 independent reflections 4019 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-11 \rightarrow 12$
$k=-12 \rightarrow 12$
$l=-15 \rightarrow 15$

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0427 P)^{2}\right.} \\
&+1.3089 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.29 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Mn1-N1	2.275 (3)	Mn1-N3	2.315 (2)
Mn1-N4	2.304 (2)	$\mathrm{Mn} 1-\mathrm{Cl} 2$	2.4285 (9)
$\mathrm{Mn} 1-\mathrm{N} 2$	2.310 (3)	$\mathrm{Mn} 1-\mathrm{Cl} 1$	2.4619 (9)
N1-Mn1-N4	152.68 (9)	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{Cl} 1$	92.02 (8)
N1-Mn1-N2	72.65 (10)	N3-Mn1-Cl1	165.16 (7)
N4-Mn1-N2	85.61 (9)	$\mathrm{Cl} 2-\mathrm{Mn} 1-\mathrm{Cl} 1$	96.86 (4)
N1-Mn1-N3	90.71 (9)	C13-N3-Mn1	125.8 (2)
N4-Mn1-N3	71.78 (8)	C17-N3-Mn1	115.87 (18)
N2-Mn1-N3	88.02 (10)	C24-N4-Mn1	126.1 (2)
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{Cl} 2$	94.17 (7)	C21-N4-Mn1	116.45 (18)
$\mathrm{N} 4-\mathrm{Mn} 1-\mathrm{Cl} 2$	105.09 (6)	C12-N2-Mn1	126.8 (2)
N2-Mn1-Cl2	165.58 (8)	C9-N2-Mn1	115.2 (2)
N3-Mn1-Cl2	86.28 (7)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{Mn} 1$	125.4 (2)
N1-Mn1-Cl1	103.48 (7)	C5-N1-Mn1	115.6 (2)
N4-Mn1-Cl1	93.42 (6)		

Figure 2
A packing diagram of the title compound. Hydrogen bonds are indicated by dotted lines.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~N} 5$	0.82	1.90	$2.613(4)$	145
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.82	2.34	$3.055(3)$	147

Symmetry code: (i) $2-x,-y,-z$.

H atoms were placed in calculated positions, with $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$ and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were constrained to be $1.5 U_{\text {eq }}$ of the carrier atom for hydroxy H atoms and $1.2 U_{\text {eq }}$ for all other H atoms. A rotating-group refinement was used for the hydroxy groups.

Data collection: $S M A R T$ (Siemens, 1996); cell refinement: $S M A R T$ and SAINT (Siemens, 1994); data reduction: SAINT and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

This work was financially supported by the State Key Basic Research and Development Plan of China (grant No. 001CB108906), the NNSF of China (grant No. 29733090 and No. 20173063), the Key Project in KIP of CAS (grant No. KJCX2-H3) and the NNSF of Fujian Province (grant No. E0020001).

References

Keeney, M. E., Osseo-Asare, K. \& Woode, K. A. (1984). Coord. Chem. Rev. 59, 141-201.
Lawrence, G. D. \& Sawyer, D. T. (1978). Coord. Chem. Rev. 27, 173-193.
Ruttingter, W. \& Dismukes, G. C. (1997). Chem. Rev. 79, 1-24.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

